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Moving further in our series of Reinforcement Learning and its applications in Finance, this article talks 
about Order Execution in Financial Markets. A classic problem like this, laid the foundations of RL in Finance. 
One of the very early papers (Reinforcement Learning for Optimized Trade Execution by Yuriy Nevmyvaka 
et al) in 2005-06. The early penetration into RL gives an idea how important this problem is. 

In this post, we will give a high level description of the problem statement before jumping onto the RL based 
solution. At the end, we will compare the results of different RL techniques alongside some base level market 
adopted (non RL) algorithms. 

Problem Description 

Traders (or market agents), everyday, face the challenge of executing a bulk order, i.e. Buy NN shares of a 

particular asset. The goal is to purchase in such a manner so as to minimize the effective cost of purchase. 

A simple example is as below: 

Time Available Inventory Executed Size Purchase Price 

10:00 10000 2000 $125.3 

10:15 8000 1000 $126.4 

10:30 7000 4000 $122.1 

10:45 3000 3000 $123.0 

 

In the above example, the initial order got executed in 45 minutes in different batches. The example is a 
made up scenario, ofcourse. Effectively, there should be a systematic way to get these orders executed in 
small batches so as to have a minimum impact cost. 

GOAL: Hence, in the use case of Optimized Order Execution, our aim is to minimize the impact cost while 
also reduce (maximize) the effective buy (sell) price. 

We will make this problem a continuous space - discrete action problem. 

https://www.seas.upenn.edu/~mkearns/papers/rlexec.pdf
https://economictimes.indiatimes.com/definition/impact-cost
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Data Requirements 

• Asset Class: Stocks (RELIANCE, SAIL) 
• Market: India 
• Data Type: OHLCV (Open, High, Low, Close, Volume) 
• Data Frequency: OHLCV level data available every minute. 
• Data Period: Training 2018, 2019 Testing 2020 
• Data Source: Sourced from here 

NOTE: We have restricted our use case to OHLCV type of data. In such problems, Limit Order Book or Tick-
By-Tick data could have proven to be more suitable. Researches by Yuriy et al have shown that LOB data is 
better here. 
However, the cost of purchasing such data goes in thousands of dollars. If you have such data, we can 
explore improving the execution algorithms using TBT or LOB data. 

 

 

Mathematical Formulation 

The mathematical formulation is adapted from Almgren & Chriss, 2000 The agent has V of a security and 
wants to completely liquidate before time horizon T. We divide T into N intervals of length τ=T/N and 
specifically, discretised times tk=kτ for  k=0,1,…,N. 

Moreover, let a trading trajectory be the sequence  q0,…,qN where qk is the number of units we hold at 
time tk or the inventory, and consequently  xk=qk−qk−1 is the units of shares to be executed at time  tk. 

Alongside, we define that orders to be executed should always be a multiple of  mlotsize. Hence,  xk can take 
values from m: 0,m,2m,...(V/m)m. 

Let’s summarize the parameters used here: 

Parameter Summary Value or Domain 

V Units to purchase (or liquidate) 10000 

T Time Horizon to purchase (liquidate) 100 minutes 

N Orders to be executed in N individual intervals 50 

τ Interval length T/N 2 minutes 

m lot size, i.e. orders to be sent in multiples of m 500 

xk lots executed at time  tk ranges from 1 to  V/m 

 

https://drive.google.com/drive/u/0/folders/0B8e3dtbFwQWURmlETFlBelI4bGs?ddrp=1%20%E2%81%A0%E2%81%A0%E2%81%A0%E2%81%A09:05%20PM%E2%81%A0%E2%81%A0%E2%81%A0%E2%81%A0%E2%81%A0
https://www.seas.upenn.edu/~mkearns/papers/rlexec.pdf
https://www.smallake.kr/wp-content/uploads/2016/03/optliq.pdf
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Our initial holding is  q0=V and at T, we require  xN=0 

The agent enters into the environment, and takes step, i.e. the order gets executed. There are certain 
assumptions made of the environment: 

[1] A market order is sent, 
[2] The order gets fully executed at Close Price at that time. 
[3] Other market agents’ interaction with the market is not included. 
[4] The order to be executed on same day before market close 
 
Let’s define the attributes pertaining to this environment. 

1. Actions 

The actions are discretized for the use case. Since, the trading trajectory defines above 
highlights  xk as units executed at time  tk. Hence,  at∈[0,V/m] where  at: action to taken at time 
step t. 

 
The code snippet is taken from my RL library. As always, for detailed code, please reach out to me 
directly 
 

2. State 

The state space defined for the use case is quite simplistic in nature. As mentioned above, due to 
lack of LOB data availability, we have limited the environment to utilize OHLCV data. Below are the 
attributes defining the state space 

o Price Vector: Last  nhistory minutes Close price. Normalized to day’s open price. Length:  nhistoryx1 
o Volume Vector: Defines current traded volume as per OHLC V. Normalized by historical 1 

minute traded volume. Length: 1x1 
o Open Inventory: At the start of current state, # of units left to be executed. Normalized to 

initial open order. Length: 1x1 
o Time left: Time left in the overall time horizon. Represented in % terms for normalization. 

Length: 1x1 

 
Total length of state vector: 
nhistory.1+1+1+1 
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This way of state creation is quite simplistic in nature, and ofcourse will not be able to model the 
Order Execution environment in complete sense. Hence, this kind of solution aims at Partially 
Observable Markov Decision Process (POMDP) 

3. Reward 

As in all RL problems, reward formulation is quite an art. Order Execution problem has been 
researched many times. It is one of the most sought after optimization problems in the fields of 
Finance. We will consider different reward methodologies here 

a. Vanilla Reward (VR): The below described method is quite simplistic in nature and here, 
immediate reward rt has 3 key components: 

i. Revenue from Executed Order: Executed order * change in Price from last time stamp. 
ii. Order Impact Penalty: Penalty imposed for higher order size. Higher the order size, more 

the impact cost and higher penalty. 
iii. Reward for taking additional step: Distributing order execution to multiple steps 

reduces order size, and hence reduces the chance on higher impact cost. 

 
Hence, immediate action is given as below:  

 

b. Almgren Chriss Reward (ACR): The reward and utility functions are described in Almgren & 
Chriss, 2000. I have not included this reward feature in this exercise, but will encourage 
reader to try this reward methodology. 

 

4. Terminal State 

The agent will terminate when either of the below conditions are met: 

1. All inventory is executed before time horizon T 

2. Time horizon T reached. If this happens, all remaining inventory is executed immediately as a 
market order. 

 

5. Objective 

The agent’s objective is to maximize the discounted cumulative rewards: 

 
 

https://www.smallake.kr/wp-content/uploads/2016/03/optliq.pdf
https://www.smallake.kr/wp-content/uploads/2016/03/optliq.pdf
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Summarizing generic parameters used in creating the environment 
 
 

Hyperparameter Value Description 

Asset Ticker RELIANCE Listed on NSE. One of the most liquid stocks in Indian market 

Inventory 10000 Initial inventory to liquidate (or purchase) 

Time Horizon 100 mins All inventory to get executed within this time frame 

Execution Start time 9:30AM NSE opens at 9:15 AM. Execution starts after 15 minutes 

nHistory 15 mins Number of historical records used in state vector 

Impact Penalize -100 Penalize factor for impact cost 

Step Reward 0.1 Reward for taking an extra step 

 

 

Reinforcement Learning Agents and Network Topologies 

We will use couple of RL algorithms (agents) utilizing both the worlds of Value based methods and Policy 
gradient methods 

1. Single layer DQN (DQN-SL) and 3 Layer DQL (DQL-3L) 

For a detailed understanding of DQN, I would recommend the Deepmind paper in Nature. I will not go 
in the technicalities of DQN, but its application in this specific case. 

 

 

 

 

 

Similar structure is used for 3 Layer DQN structure. Only difference being the number of Dense + 
Dropout layers 

https://www.nature.com/articles/nature14236
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Network Configuration as below: 

Hyperparameter Value Description 

mini batch size 32 number of training cases over which each Adam Optimizer 
is run 

replay memory buffer 10000 updates are sampled from this memory 

target network update 
frequency 

50 The frequency (measured in number of episodes) to 
update the target network 

optimizer Adam Adam optimizer is used to train the network 

learning rate 0.001 Optimizer learning rate 

clip value 100 Clips the final output of network to be between this -100 
to 100 

initial exploration 1 initial value of  ϵ in  ϵ greedy exploration 

final exploration 0.1 final value of  ϵ in  ϵ greedy exploration 

final exploration frame 6000 number of frames over which  ϵ is linearly annealed to 
final value 

 

2. DDQN 3 Layer (DDQN-3L) 

Similar to DQL-3L structure, Double DQN differs from DQN in the internal mechanics of how the 
target values are computed. Again, I will not go into the details of such difference, but will suggest 
this wonderfully written post here. 

Network architecture is similar to DQN-3L. 

  

https://livebook.manning.com/book/grokking-deep-reinforcement-learning/chapter-6/v-4/35
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3. Single Layer A3C (A3C-SL) and 3 Layers A3C (A3C-3L) 

The details of A3C can be googled on internet, and I wont go into the technicalities and mathematics 
behind it. As a recommendation, please read this paper Asynchronous Methods for Deep 
Reinforcement Learning 

 

Network Configurations (same for actor and critic) as below: 

Hyperparameter Value Description 

mini batch size 32 number of training cases over which each Adam 
Optimizer is run 

Number of 
cores 

4 Number of cores on which the worker agents 
are trained 

optimizer Adam Adam optimizer is used to train the network 

learning rate 0.001 Optimizer learning rate 

Network Layers 1 (3) Dense Layer of 20 
neurons each 

for Actor and Critic 

 

 

Loss functions utilized in individual DQN and A3C agents are similar to the ones used in respective papers 
(DQN, A3C) published. 

 

Let’s compare the performance of these individual learning agents. 

  

https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://www.nature.com/articles/nature14236
https://arxiv.org/abs/1602.01783
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Agent Performance Evaluations 

As always, for detailed code and explanation, please write to me directly. 

Without further ado, lets jump onto the agents and their learning patterns. For all the agents, the training 
period was 2018 and 2019. Every time, the environment is reset, a day is sampled, and order execution 
happens on that sampled date. 

 

 

 

 

 

 

 

So, what’s happening here? 
There are 5 different agents learning to work their way around the environment 

1. DQN-SL: 
o Number of episodes: 1000 episodes 
o Saturation stared happening after 1st 200 episodes 

2. DQL-3L: 
o Number of episodes: 1000 episodes 
o Saturation stared happening after 1st 400 episodes. 
o A bit of slower learning than a single layer network. Extra layers dont add much value. 

Slows down the network due to vanishing gradients. 
3. DDQN-3L: 

o Number of episodes: 1000 episodes 
o Higher variance, and slower learning than DQN-SL. 

4. A3C-SL: 
o Number of episodes: 2000 episodes 
o Number of cores: 3 cores 
o Similar performance to DQN-SL, but faster learning as running on multiple cores 

5. A3C-3L: 
o Number of episodes: 2000 episodes 
o Number of cores: 3 cores 
o Best performance of all. Seems like even after 2000 episodes, agent was still learning. 

Reward saturation wasnt achieved yet. 
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The below graphical summary compares the number of steps taken to fully execute the order 

 

 

 

 

 

 

 

 

• DQN networks learnt to spread the inventory across multiple intervals. Number of steps taken 
start rising sharply. 

• A3C networks are slow to learn in that aspect. A3C-3L started distributing the orders to multiple 
steps only after having gone through many episodes. 

Agent Testing 

In order to test the performance of our agent(s), we will compare them against a base case of Equally 
executed orders at equal time intervals. 

Base Case: 

• Inventory to purchase: 10000. 
• Lot size: 500 
• Time Horizon: 100 minutes with 50 intervals. 
• Execution: 1 lot every 2 minutes for 20 intervals. This way, all the inventory will be executed. 

Test Date: 31 JAN 2020 

  



10 

 

1. Stock: RELIANCE 

Reliance is a fairly liquid stock in Indian markets. For more details on daily traded volume, please refer 
to NSE India) 

 

Key Takeaways: 

• DQN-3L has given us the best executed price. Orders spread across till the last minute, the agent 
has tried to minimize the impact cost while also giving us the best execution price 

• Both A3C agents sent out big orders and the entire inventory got executed immediately 

 

2. Stock: SAIL 

Reason for choosing SAIL is because of its liquidity. It is not as heavily traded stock as Reliance, but has a 
relatively good volume. I will say it is a mid tier liquid stock. 

Key Takeaways: 

• Price movement is very limited in case of Sail. In the time frame, it has moved between 47.1 to 
47.8. 

• Again, DQN agents show the best execution here. With higher reward, better execution price, and 
order spread across multiple intervals, DQN has fared far better than A3C as well as base models 

https://www.nseindia.com/
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The state-action pair combination for DQN-SL agent. 

From the figure, it seems evident that at the beginning, i.e. when 
inventory left is high and time left is also high, the DQN agent is 
cautious while sending out the order. The order size (in lots) is 
smaller. But, as it gets close to end of time, the order size 
increases 

 

 

 

Conclusion 

With a deep dive hands on experience with Order Execution, we eventually found that RL definitely helps 
out in improved Order execution, better than some base cases. Further more, we can improve the 
execution algorithm by implementing more complication reward technique while utilizing LOB data. 

Hope you enjoyed reading this exercise. 

 

Appendix 

References 

1. Optimal execution of portfolio transactions by Almgren, R. and Chriss, N. (2001) 
2. Reinforcement Learning for Optimized Trade Execution by Yuriy Nevmyvaka et al. 

 

 

 

 

 

https://www.smallake.kr/wp-content/uploads/2016/03/optliq.pdf
https://www.seas.upenn.edu/~mkearns/papers/rlexec.pdf
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