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In the earlier posts on RL, we talked about various algorithms, such as DQN, A3C, DDPG etc. But, how great 
it would be to apply these algorithms in the realm of Finance. 

This post is dedicated to the very first Finance Use case of RL, viz, Portfolio Management. Without further 
ado, let’s deep dive into the problem statement and how we will frame the problem using RL. 
So, sit back and grab your coffee. 

Summary 

As any RL problem, our goal is to maximize the reward. Here, the goal is to train multiple Deep 

Reinforcement Learning (DRL) agents to maximize Stock Portfolio performance over time. 

Problem Description 

An agent with a fixed capital $1,000,000 (C0) wants to allocate the capital onto 2 (or more) stocks. Certain 
part of the capital (Creserve)is left aside for Cash reserve. 

The agent should make buy/ sell/ hold decision every day for each asset such that the portfolio value 
(composition of Cash reserve + present value of stocks) is maximized over time. 

We will make this problem a continuous space - discrete action problem. 

Data Requirements 

High/ low/ Adjusted Close Prices for various stocks, downloaded from Yahoo Finance. 

 

Mathematical Formulation 

The portfolio consists of mm assets + cash reserve. In our example, we will let m=2. 
The overall process can be formulated as a Markov Decision Process (MDP). In such MDPs, we need to 
construct a proper environment. We call this environment: PortfolioEnv. 
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The agent enters into the environment, and takes step, i.e. performs rebalancing activity in order to 
maximize the reward. Every step taken should take into account the below factors: 

[1] Short Selling Not allowed 
[2] Cash reserve should not become negative 

Besides this, the environment also entails a Transaction Fee of 1 basis points, i.e. 0.01% of every notional 
traded. 

Let’s define the more attributes pertaining to this environment. 

 

1. Actions 

Since this is a discrete action space, we have defined the action space as below, with 7 unique actions. 

 

 

Let’s understand it in detail. Since, we are dealing with  m=2 assets, every action is of length 2. If  vt = $1M, 
we will sell $300K worth of asset A and purchase $300K worth of asset B under action [-0.03, 0.03]. 
 

2. State 

We will create 2 separate models for State (st) for the environment. 

o Vanilla State Memory (VSM): 

Each state st consists of the below features: 

o Return vector: For each stock, we will store the n recent daily returns. Vector length:  mxn 
o Current Holdings: Latest portfolio holding of each asset (excluding Cash reserve).  h1,h2...hm. 
The holding is normalized to initial holding of each asset. h1t/h10,h2t/h20 Vector length: m 
o Cash reserve: Latest available cash  ct. Normalized by initial cash 
o Permitted actions: Not all actions are feasible under a current state. What if the action taken 
leads to short selling? That action should be forbidden. For every action, it will be a boolean. 1 
represents a permissible action, and 0 represents forbidden action. a1,a2....anactions. Vector 
length:  nactions 
 

We have added the final item to make sure that agent learns NOT to take forbidden action 
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Total length of state vector: 
m∗nhistory + m∗1 + 1 + nactions 

NOTE: This kind of state creation is inspired from Project work of Harish Kumar 
 
 

o Portfolio Vector Memory (PVM): 

This kind of state composition is inspired from the work done by Jiang, Xu and Liang. 

In this manner of state construction, we define the below state components: 

▪ Price Tensor: Asset price has 3 components – vhigh,vlow,vclose. We collect the price history 
of  m=2 assets for  nhistory=30 days. 
Shape of this tensor: m x  nhistory x 3 

 

▪ Current Holdings: Current holdings weights in percentage terms. h1,h2...hm. Vector length: m 
▪ Cash reserve: Latest available cash (in percentage terms of overall portfolio )  ct. 

 

3. Reward 

Constructing the reward is quite an art. The whole idea Reinforcement Learning is to maximize the 
cumulative reward. So, how we define the reward system in an environment is quite important. 

In the case of PortfolioEnv, immediate reward rt has 3 key components: 

o Daily portolio return: This is how portfolio has gained or lost in a day. 
o Return variance Penalty: In order to avoid high volatile portfolios, we will grant a penalty based 

on portfolio variance 
o Forbidden action Penalty: If the agent takes a forbidden action, a significantly high penalty is 

granted to that step. 

Hence, immediate reward is given as below:  

http://xqian37.github.io/report_harish.pdf
https://arxiv.org/abs/1706.10059
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4. Terminal State  

The agent will learn from the environment for a whole year. Terminal state is defined as the last day of 
the year. 

5. Objective 

The agent’s objective is to maximize the discounted cumulative rewards: 

 

 

Summarizing generic parameters used in creating the environment 

 

Hyperparameter Value Description 

Number of assets 2 (Ticker: APA, BMY) Number of stock assets in portfolio 

Initial Portfolio USD 1M Initial portfolio value 

Initial cash 2% Cash reserve at the beginning 

Initial Holdings Equi weighted At the beginning, equal weight is assigned to each asset 

Transaction fee 1 bps Every buy/sell will hav a certain transaction cost 

History 30 days Number of historical records used in state vector 

Variance Risk Penalize 0.08 Penalize factor to reduce portfolio variance 

Forbidden Action Penalize 8 Penalize factor to avoid forbidden action 

Discount factor 0.99 Discounts the future reward to today 
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Reinforcement Learning Agents and Network Topologies 

We will use couple of RL algorithms (agents) utilizing both the worlds of Value based methods and Policy 
gradient methods 

1. DQN with Vanilla State memory (DQN-VSM) 

For a detailed understanding of DQN, I would recommend the Deepmind paper in Nature. I will not go in 
the technicalities of DQN, but its application in this specific case. 

 

With state vector (VSM) as input, the output of the training model is the state action values pertaining to 
each possible action. 

Network Configuration as below: 

Hyperparameter Value Description 

mini batch size 32 number of training cases over which each Adam Optimizer is run 

replay memory buffer 200000 updates are sampled from this memory 

target network update 
frequency 

50 The frequency (measured in number of episodes) to update the 

optimizer Adam Adam optimizer is used to train the network 

learning rate 0.0001 Optimizer learning rate 

clip value 100 Clips the final output of network to be between this -100 to 100 

initial exploration 1 initial value of  ϵ in  ϵ greedy exploration 

final exploration 0.1 final value of  ϵ in  ϵ greedy exploration 

final exploration frame 200000 number of frames over which  ϵ is linearly annealed to final value 

 

  

https://www.nature.com/articles/nature14236
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2. A3C with Vanilla State memory (A3C-VSM) 

Refer to my previous article on A3C agent, and how it utilizes policy gradient technique to improve the 
policy. A3C incorporates 2 networks, viz, Actor and Critic. 

Actor defines the policy which the agent learns, i.e., probability of taking a particular action given the 
state. Critic criticizes the state value under the policy π.  

The network models for both Actor and Critic are similar, with only difference is in the output. 

 

 

 

The asynchronicity comes from the fact that there are multiple worker agents trying to learn the policy 
while sharing the learnt network parameters regularly to the global Actor Critic model. A quick network 
A3C network recap:   

 

 

 

 

 

 

 

Network Configurations (same for actor and critic) as below: 

Hyperparameter Value Description 

mini batch size 32 number of training cases over which each Adam Optimizer is run 

Number of cores 8 (and 1) Number of cores on which the worker agents are trained. We will run 
both cases of multi core and single core. 

optimizer Adam Adam optimizer is used to train the network 

learning rate 0.0001 Optimizer learning rate 

http://127.0.0.1:4000/2021/04/24/Asynchronous-Advantage-Actor-Critic/
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3. A3C with Portfolio Vector Memory (A3C-PVM) 

In this methodology, we will still utilize A3C agent, but the state definition comes from Portfolio Vector 
memory (as highlighted earlier). 

The network comprises of multiple CNN layers to utilize the effect of high/ low and close prices across 
past n days. 
NOTE: We have not used the forbidden action vector in PVM. 

 

Network Configurations (same for actor and critic) as below: 

Hyperparameter Value Description 

mini batch size 32 number of training cases over which each Adam Optimizer 
is run 

Number of 
cores 

8 Number of cores on which the worker agents are trained 

optimizer Adam Adam optimizer is used to train the network 

learning rate 0.0001 Optimizer learning rate 

Network Layers 2 1x3 Convolutional Layers 
20 1x28 Conv Layers 
1 1x1 Conv Layer 
32 neuron Dense 
Final Layer for Actor or 
Critic 

PVM utilizes a large Deep Neural network. 

 
Loss functions utilized in individual DQN and A3C agents are similar to the ones used in respective papers 
(DQN, A3C) published. 

Let’s compare the performance of these individual learning agents. 

  

https://www.nature.com/articles/nature14236
https://arxiv.org/abs/1602.01783
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Agent Performance Evaluations 

The entire exercise is solely developed in Python (3.8+). For NN networks, keras has been used with 
tensorflow as backend. 

As always, for detailed code and explanation, please write to me directly. 
 
Without further ado, lets jump onto the agents and their learning patterns. 

 

 

 

 

 

 

 

 

 

 

First of all, my apologies for such a bad resolution of the above result. My server machine is different and I 
can’t take the screenshot directly. Camera resolution works only to some extent. So, what’s happening here? 

There are 5 different agents learning to work their way around the environment 

1. DQN-VSN: 
o Ran for 2000 episodes and training period was 1 year. 
o Started with lower rewards, but gradually agent started learning and cumulative reward 

started increasing. 
o Seems that even after 2000 episodes, cumulative reward was still going higher. This is a sign 

of over-fitting. 
2. A3C-VSN with learning rate: 0.00001: 

o Worker agents running on 8 cores. 
o In total, ran for 4000 episodes and training period was 1 year. Each year was different for each 

worker. 
o Overall learning stopped quickly, i.e. maximum reward (for this agent) already achieved. 

3. A3C-VSN with learning rate: 0.0001: 
o Similar functioning as above case, but a faster learning rate. (10x faster). 
o Agent slowly started learning, and maximum reward realized and saturated 
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4. A3C-PVM: 
o With a Deep CNN based Portfolio vector memory, this network and agent learns quite 

differently. 
o It started with quite a low reward, and started reaching new highs. 
o But, its learning is relatively slower than other networks. 
o 1 reason could be that this network doesn’t use the forbidden action vector. 
o However, eventually, the network learnt the best policy and achieved the best reward 

possible. 
5. A2C-VSN : 

o Similar to other A3C VSM agents, but there is only 1 single worker. 

 
The below graphical summary compares the average portfolio value reached after n episodes for different 
agents. Clearly, DQN-VSM agent continues to learn (or over fits). 
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Agent Testing 

• Our base case for the environment will be a Buy and Hold Strategy, i.e. we simply buy equi-
weighted portfolio at the beginning of the period. 

• Testing period: Year 2020. This year marks the most surprising and unprecedented year, both for 
financial markets and humankind in general. A period of Covid 19 took a lot of toll! 

• Lets compare couple of strategies in this time frame. 

 

 

 

 

 

 

 

 

 

 

 

 

Seems like A3C-VSM model could have been a poor agent than just a Buy & Hold strategy for year 2020. 
However, DQN-VSM model has been shown an outstanding performance. Throughout 2020, it kept on 
buying more of Asset 1 and selling asset 2. However, overall variance of DQN-VSM generated portfolio 
seems to be quite high. 

Conclusion 

This exercise was to get a hands on experience on Reinforcement Learning in Finance. I can guess that 
there would be few gaps here and there in the implementation and creation of states, actions, rewards 
etc. 

I only considered a Continuous state space - discrete action space in this exercise. A more realistic and 
practical would be to consider a continuous action space as well. I would highly recommend you to create 
it from scratch. By doing a full hands-on, one can attain a deeper understanding of the topic. 
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